Digital
  • protective case
  • selfie stand
  • Phone film
  • charger
  • Home
  • charger
  • Eggtronic Enables GaN-based Charging for EVs
a mobile phone charger is a step up transformer
  • 21 Apr, 2022
  • By Digital

Eggtronic Enables GaN-based Charging for EVs

//php echo do_shortcode('[responsivevoice_button voice="US English Male" buttontext="Listen to Post"]') ?>

A patented AC wireless power hybrid technology from Eggtronic is designed to increase the power and efficiency of wireless charging applications for home and automotive applications.

Igor Spinella, CEO and founder of Eggtronic, said the proprietary technology dubbed E2WATT is supported by a GaN half-bridge and a dsPIC33 microcontroller. That arrangement merges a conventional power adapter and Qi wireless transmitter, boosting efficiency to overcome challenges posed by the Qi wireless power transfer standard.

Traditional Qi wireless power is limited by distance (usually 5 mm), and maximum power (up to 30 W). Overheating is another issue: After fast-charging, thermal protections are activated, which stops charging. “Our solution directs the magnetic field in the right way, avoiding the problem of overheating not only for the Qi standard but also offering compatibility with the new Apple 12, which is not Qi-certified, thus paving the way not only for automotive but also for consumer applications,” said Spinella.


As electric vehicles merge into the fast lane, technology development is shifting to critical areas ranging from enhanced power management to faster charging schemes. All will help reshape power grids. We go under the hood in our upcoming Electric Vehicle Special Project.


He added that the new hybrid technology with AC input does not require an AC/DC adapter, allows up to 95 percent efficiency with power of up to 300 W and 40-mm distances while reducing the overall size thanks to GaN technology. “The powers can be scaled up, reproducing the applicability for large-scale applications such as electric vehicle charging. Ninety-five percent was achieved at a distance of 10 mm, which is double what we could achieve with the Qi standard, [and] which at 5 mm is usually no more than 70-percent efficient, representing a real breakthrough for inductive standards,” Spinella claimed.

Qi Standard

The Qi system for wireless power transfer consists of two basic modules, base station and mobile device, as shown in Figure 1. The base station includes one or more power transmitters capable of providing wireless power transfer. It consists in principle of a power conversion and a control and communication units. The various subsystems have analog features responsible for driving a primary coil and digital features controlling the power transfer process while communicating with other parts of the system.

The mobile device includes a single power receiver which consists of a power-harvesting and a control and communication units. On the same level as the transmitter are analog and digital subsystems for process optimization. The actual power transfer from the base station to the mobile device is achieved by inductive coupling between the two primary and secondary coils: once placed in close proximity, these coils create a resonant transformer in the air with resonant frequencies on the order of 100 kHz. The power transfer is constantly monitored and controlled by system logic for varying power requirements imposed by the device depending on its current state. (For example, the completion of a battery charging process.)

The technology currently enables wireless power transfer of up to 30 W with an operating frequency of 100-200 KHz over a distance of up to 5 mm.

E2WATT Technology

With around 200 patents and founded in 2012, Eggtronic specializes in energy conversion and wireless power. It has recently focused on various consumer designs through inductive and capacitive approaches. The company has already raised more than $20 million.

“On the basis of the Qi standard, we are already serving many automotive companies,” Spinella said. “We decided to increase the level of integration of our solutions in order to launch our proprietary standards [that are] able to increase performance and features. Thus, we developed our own ASIC, entirely designed by us and manufactured by TSMC.”

E2WATT is its latest wireless technology (see Figure 2). It is powered directly from AC without the need for an external power supply. The hybrid wireless AC power approach serves as both power supply and wireless charger. “The goal was to get a product that could be better than the equivalent wired power supply unit. It is certified as a power supply from an emissions and safety point of view, and of course, it is a wireless power transfer technology,” said Spinella.

E2WATT uses GaN technology from Navitas Semiconductor, highlighting silicon’s inability to provide adequate switching frequencies, for example, which is limited to about 100 KHz. The harder it is driven, the more heat generated, along with complexity and cost. Meanwhile, low-frequency magnetics are too slow when running at corresponding speeds. “Hard-switching” topologies are one option, but they introduce switching losses; when frequency is increased, efficiency drops due to increased parasitic inductance.

Also, old topologies and legacy control ICs can’t keep up. Therefore, the first step is attempting to solve the switch problem using GaN technology. Navitas’ GaNFast approach consists of a GaN switch – a field-effect transistor – with monolithically integrated analog drive circuits and digital logic circuits integrated on the same chip as the GaN power device. GaNFast power ICs are rated at 2 MHz. High-speed operation offers reductions in size and the cost of power conversion for fast-charging systems.

In addition to GaN technology, Microchip Technology’s dsPIC33 microcontroller with u core DSP, high-speed ADC and high-resolution pulse width modulation enables the E2WATT’s digital architecture to offer feedback control of the transmission while optimizing the charging distance. Thanks to its proprietary receiver technology, Spinella said the platform enables a significant drop in receiver temperatures.

The E2WATT transmitter (Figure 3) uses logic to convert AC power from the grid into another AC frequency to activate the coil. The base consists of half-bridge circuit by Navitas to stimulate the LC tank, which complies with the Qi standard. The architecture allows for direct high-input voltage, eliminating the need for an AC/DC converter in series, and for zero-voltage switching (ZVS) without the use of the resonant LC tank, ensuring that ZVS is achieved in most load conditions. It also allows for continuous control from light to full load, without using burst mode, said Spinella.

ZVS also reduces the capacitive switching losses at turn-off, and turn-on, thereby eliminating the capacitive turn-on loss. That makes it suitable for high-frequency operation.

The receiver acts both as a rectifier and as a non-dissipative regulator. This is achieved by controlling the ratio between active power delivered to the load and reactive power reflected to the primary side. “The reactive power in the wireless system [transmitter and receiver] is minimized using a second-control loop that ensures minimum reactive energy in the system, Spinella added.

Eggtronic Enables GaN-based Charging for EVs

Wireless charging is undeniably faster, easier and more convenient than wired alternatives. Not only is it more efficient, but also provides better thermal performance. The latter is often seen as a secondary design consideration by developers in order to bring their products to market faster.

Electric cars are large energy stores, and the ability to provide more power with less frequent charging is a short-term goal to support EV adoption. Larger battery size, the higher the rate of current flow and heat generation are also considerations. Therefore, integrating technology into electric cars and installing municipal and private charging stations could eventually reduce the need to connect vehicles for charging.

Articles in this Special Project:

EVs Shift to the Express Lane

By George Leopold

Electric vehicles are going mainstream as battery and power management technologies mature and EV charging infrastructure expands.

Battery EVs: Growing Momentum

By Egil Juliussen

Demand is building, but battery EVs still require performance improvements and technology advances.

Testing Gear Emerges for EV Charging Applications

By Maurizio Di Paolo Emilio

Electric vehicle test systems are certifying the reliability of complex EV powertrains along with related charging interfaces and supply gear.

Silicon Carbide Cost Outweighed by Performance Gains in EV Apps

By Maurizio Di Paolo Emilio

The ultimate goal is providing next-generation SiC devices that boost the performance-cost ratio.

Modeling Battery Designs via Quantum Computers

By George Leopold

Machine learning algorithms running on quantum computers are being used to improve Li-ion battery performance and safety.

Battery Monitoring is Critical for EV Safety

By Vikram Sundaram

The proliferation of e-scooters underscores the need for new battery management schemes.

Looking at Hybrid Supercapacitors

By Bill Schweber

The rechargeable battery and the supercapacitor each have relative pros and cons, but a hybrid design that merges both technologies into a single structure can overcome many of the limitations of each.

Supercapacitor Market Gets a Jolt

By George Leopold

Supercapacitors are still evolving, but the energy storage and charging technology is gaining adherents.

PREV

The next PS5 restock: What you need to know to finally score a PlayStation 5

NEXT

Phone tapping case: Questions posed to make me co-accused, claims Fadnavis

Category

  • protective case
  • selfie stand
  • Phone film
  • charger

Related Articles

  • Energy bills recharge the case for solar panels

    Energy bills recharge the case for solar panels

    27 Dec, 2022
  • RAC joins forces with Zap-Map to support electric drivers

    RAC joins forces with Zap-Map to support electric drivers

    26 Dec, 2022
  • Scots killer John Reid found hiding mobile phones in his jail cell TV

    Scots killer John Reid found hiding mobile phones in his jail cell TV

    25 Dec, 2022
  • California bans gas-powered lawn equipment and other ‘small off-road engines’ Guides

    California bans gas-powered lawn equipment and other ‘small off-road engines’ Guides

    24 Dec, 2022

Hot Articles

  • Guide for Hardware Shop Starters: Money Saving Edition

    Guide for Hardware Shop Starters: Money Saving Edition

    01 Jul, 2022
  • Zollabgabe erhöht sich bei offenen Zellfernsehern

    Zollabgabe erhöht sich bei offenen Zellfernsehern

    19 Aug, 2022
  • How To Save the Cost of Opening a Hardware Store?

    How To Save the Cost of Opening a Hardware Store?

    19 May, 2022
  • Les meilleures recettes pour cuisiner avec du cidre

    Les meilleures recettes pour cuisiner avec du cidre

    31 May, 2022

copyright@2022 mobilephoneshells.com

  • protective case
  • selfie stand
  • Phone film
  • charger